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Abstract

In view of the growing prominence of corporate modeling, an important

area of research concerns techniques for facilitating the design and

utilization of models. In this paper we show how first-order predicate

calculus can be used as a language for formally stating modeling

knowledge. Furthermore, knowledge stated in this manner can be subjected

to the resolution principle. The result is that application specific

modeling knowledge need not be embedded in a computer program. Rather, it

can be stored in a data base and utilized as needed by a problem processing

system employing resolution techniques. Advantages of a decision support

system taking an approach of this sort are considerable modeling flexibility

capacity for automating the model formulation and execution processes, and

compatibility with a high-level user interface language.
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Operations research is concerned with the issues of model building

and interfacing models with appropriate data in order to produce some

expectations, facts, or beliefs for the support of decision making. First

order predicate calculus can be used as a language for assisting in these

activities, for capturing the knowledge of an OR expert as to how models

can be correctly built and utilized. We shall examine the implications

that this method of representing modeling knowledge has for the design

of computer-based decision support systems.

A survey by Naylor and Schauland (151 has documented the

importance and growth of corporate modeling. The three shortcomings of

corporate models most frequently cited by users are inflexibility of

the model, poor documentation, and excessive data input requirements.

Users indicated that the three most desirable features for corporate model-

ing are sensitivity analysis, simple data base utilization and flexibile

report generation. An objective of the predicate calculus method for

representing modeling knowledge is the avoidance of these shortcomings and

the accomodation of the desirable features.

On the basis of their survey, Naylor and Schauland maintain that the

future of corporate modeling depends upon 1) the development of languages

that are high-level and user-oriented; 2) the linkage of production

planning models into overall corporate models; 3) the linkage of optimization

models into overall corporate models; 4) the integration of financial, pro-

duction and marketing models in a flexible, facile way; and 5) the linkage

of corporate models with environmental models. The utilization of predicate

calculus, as introduced in this paper, furnishes a method for handling the

mechanics of inter-model linkages. The method is flexible in terms of

adding or revising inter-model linkages. Moreover it can be incorporated

into a computer-based decision support system in such a way that the system's

users can direct model formulation and execution via a very high level
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problem language. Note that the predicate calculus is not the high

level language with which a user states a problem. It is the language

for capturing modeling knowledge and for subsequently utilizing that know-

ledge within the system in the attempt to solve the user's problem.

We begin with a brief review of first order predicate calculus and

the resolution principle. This is followed by an examination of a) the

important issues involved in the treatment of models within decision support

systems and b) a way in which predicate calculus may be used to address

these issues. The proposed method is illustrated with an example. In

conclusion, unresolved questions and topics of future research are

identified.

,_,_ _ _ _ 1.. .
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1. Review of Predicate Calculus and Resolution

The predicate calculus is a general system of logic consisting of

inference rules and a language for making statements about some domain

of discourse. These statements may be viewed as assertions or axioms.

Given a set of axioms, inference rules may be applied to these axioms to

produce new statements which are logically valid deductions. The resolution

principle is an inference method in predicate calculus which permits auto-

matic deduction. Devised by Robinson R7], the resolution principle requires

that all axioms be in what is called the clause form of first order predicate

calculus. For complete descriptions of predicate calculus and resolution

the reader should refer to [11 and Nilsson 0.S; many details are omitted

from the present review.

The predicate calculus language is given by its syntax, which specifies

a) the symbols that are permitted in predicate calculus expressions and b)

the ways for combining those symbols into valid expressions. The fundamental

construct of the predicate calculus is the predicate symbol, conventionally

represented by uppercase letters. Our primary concern here is with pre-

dicate symbols that occur with arguments (e.g., P(x), GT (a,b), or R(y,f(w))).

A predicate symbol can be interpreted as indicating the property of

its argument ("x has property p") or the nature of a relationship among its

arguments ("a is Greater Than b").

There are three kinds of arguments: constants, variables and functions.

Lower case letters at the beginning of the alphabet and numerals will be

used to denote constants. Variables are represented by lower case letters

at the end of the alphabet. Functions are given by fi where i t 1. For

a given application area, the set of all constants pertinent to that

application is called the domain of discourse. Variables fill the customary

role of representing one or more of the constants in the domsin of

discourse. If a function has n arguments, then that function maps an n-tuple



of members of the domain of discourse into some member of the domain of

discourse. Constants and functions are called terms. If tI, t2, ., tm

are terms and P is a predicate symbol then P (tl, t2 .... tm) is an atomic

formula.

We can now examine how valid predicate calculus expressions are

constructed from terms, variables, predicate symbols, and certain special

symbols. Legitimate predicate calculus expressions (i.e., axioms) are called

well-formed formulas (wffs). All atomic formulas are wffs. If o is a wff,

then a is a wff. If o and B are wffs then o B to a wff, A B is a wff,

and o v B is a wff. Before presenting other types of wffs we pause to

discuss the semantics of the predicate calculus presented so far.

As stated above, constant symbols are used to specify the domain of

discourse of a particular application area. A function specifies a mapping

that is meaningful for the application area. A predicate symbol specifies

a property or relationship that has a meaning within the application area.

Note that the specific interpretation of a given constant, function, or

predicate symbol is embedded in a knowledge of the application area and

not in the predicate calculus. Using this knowledge about the application

area we can give an interpretation of either T (true) or F (false) to any

atomic formula. Then, utilizing the semantics of the various special symbols

(. , A) that appear in a wff, an interpretation of the wff can be

given. That is, every wff can be assigned a value of T or F. The special

symbols are defined in conformance with the usual mathematical notions of

implication, negation, disjunction, and conjunction [16]

To this point no mention has been made of variables in connection with

well-formed formulas. Variables, together with assocaited quantifiers, can

be used to shorten certain kinds of long wffs. In order to state a wff

that makes the same assertion about every one of the members of some

domain of discourse, we could write out the conjunctive expression formed

-I I i II l .I- - I. . - |~ II I I -I .i - -
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from each individual assertion. This long and somewhat repetitive wff

can be more concisely expressed by using a universally quantified variable.

For instance, rather than writing P (a),f P (a2 )A P (a3 ) 4 ... 4 P (an)...

where Lai , a2. ... , .. is the domain of discourse, we can simply write

Yx P (x). The symbol "Y" is the universal qtantifier and has the usual

mathematical meaning. In this example, x is said to be a universally

quantified variable.

Another type of quantifier is the existential quantifier (2) which also

has the usual mathematical meaning. Expressions with existentially quantified

variables may be used to concisely represent a disjunctive wff composed of

the same assertion (wff) about every member of a domain of discourse. Using

(al, a2 ... , an' ... ] as the domain of discourse, the wff Q(an,a1 )vQ(an,a2 )

v -. v Q(an, an)... can be simply restated as a y Q(a n, y). The earlier notion

of a "term" can now be extended to include universally and existantially

quantified variables, thereby extending the earlier notions of an atomic

formula and a wff.

For a given application area (and therefore domain of discourse) the

predicate calculus provides a means for expressing knowledge about that

area in the guise of wffs. The set of all stated wffs having a T interpre-

tation for an application area will be referred to as the axiom set for

that application. When stating knowledge about an application area in terms

of axioms it is vital that the Rxioms vff&) be consistent with one another.

For example, P(a) and ~P(a) should not appear in the same collection of

axioms to be used in a specific application area, since they cannot both

have a T interpretation. Note that as new knowledge is acquired about an

application area, new axioms can be included in the axiom set.

Given an axiom set, the question arises an to whether one can make

logically valid inferences from that set. From explicitily stated axioms,

how can one infer other axioms which are implicit In the axiom set? The

t t i| | ! il II

____ ____ __ 1
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resolution principle of Robinson furnishes an inference method which can

be applied to any axiom set. Briefly, resolution begins with a "target"

axiom (often referred to as a theorem) and determines whether it logically

follows from the axiom set. Before resolution procedures can be applied,

the theorem and the axiom set must be put into clause form. That is, each

wff must be converted into one (or possibly more) equivalent wffs that have

the clause form. A simple algorithm to accomplish this conversion is given

in a62 and is not repeated here. The algorithm has such effects as

eliminating implications, existential quantifiers, conjunctions, and

explict universal quantifiers. Each of the resultant wffs is a disjunction

of literals, where a literal is an atomic formula or a negated atomic

formula. This disjunction is called a clause and, unless otherwise

indicated, we assume an axiom set to be in clause form. All variables

appearing in a clause are understood to be universally quantified.

As an initial step in resolution, the theorem to be prVe is negated.

(Resolution will then provide a proof by contradiction) One literal, L*, of

this negated theorem is chosen as a basis for unification [17]. Unification

is a procedure whereby two clauses are reduced to a single clause (called the

resolvent) by making argument substitutions between the two parent clauses,

such that one of these clauses contains a literal that is the negation of a

literal in the other clause. These two literals (which form the basis for the

unification), disappear from the resolvent. In resolution, the negated

theorem is one parent clause and the other parent clause is chosen from the

axiom set. This latter clause must contain a literal that allows it to be

unified with the negated theem, based upon L*.

Linear resolution is a recursive process, in which the resolvent of a

wiification becomes one parent clause in the succeeding unification. The

other parent clause is a clause chosen from the axiom set, such that it

can be unified on the basis of some selected literal L* appearing in the

_ _ _ _ _ _ _ _II
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preceding resolvent. If a null resolvent arises as the result of these

successive unifications, then the theorem has been proven. That is, the

"target" axiom can be inferred from (or is implicit in) the explictly

stated axiom set. A property of resolution as applied to predicate

calculus is that if a theorem is true a proof will be found in a finite

number of applications of the resolution process.

For a complete, detailed description of the resolution principle

see [. Several clearly presented examples can be found in

Figure 1 displays the formalism that is used in this paper to illustrate

a resolution process. Clauses C1 and C2 are parent clauses. Here,

unification is based on the literal -PD (z, 1978). Using the indicated

substitutions (z replaces d and 1978 replaces yr), the last literal of

C2 is the negation of ~PD (z, 1978). Thus C and C2 can be unified,

giving the resolvent C In the next unification (if one is possible)

C becomes a parent clause.

Van Emden D has noted that algorithmic implementations of the

resolution principle differ according to methods used for handling two

choices that must be made when performing resolution. One choice

involves which literal to use as a basis for unification. Having made this

choice, there may be many clauses in the axiom set that can be used for

unification. The second choice is whether these should be examined with

a breadth-first or depth-first strategy and which clause should be treated

first, second, etc. We shall return to these implementation issues at the

end of this paper. In the meantime the major objective is to demonstrate

how the predicate calculus and resolution principle can be used for the

formal representation and automatic utilization of modeling knowledge as

a decision support system enhancement.



2. The Inclusion of Modeling within a Decision Support System

The importance of a modular approach of model development and design

for decision support systems is well-known. Kleijnen [I1 has pointed out

its significance from the standpoint of reducing developmental costs. The

modular approach is also valuable in terms of the flexibility it affords

(see Sprague and Watson P2J, Seaberg and Seaberg [1S). The term "module"

will be used here to denote a model that can be applied either on a stand-

alone basis or in tandem with other modules to form a more comprehensive

model. The existence of a pool of modules will serve as our starting point

for the incorporation of modeling capabilities into a decision support

system (DSS). The pertinent issue is the identification of (hopefully

general) methods for coordinating and managing these modules within a

DSS context. That is. how are modules "tied" together to form a model

in a DSS?

As pointed out by Bonczek, et. al. [4], model usage within a DSS

can be broadly classified as falling into one of the following categories:

1) the DSS user gives a procedural specification of how the model

is constructed,

2) the DSS user invokes a predefined model by name, or

3) the DSS user states what data are desired and the DSS formulates

a model(s) that can satisfy the request.

Although category I involves a relatively low-level language, requiring

procedural description, it does afford considerable flexibility in terms

of the models that can be specified. The second category is non procedural,

but has limited flexibility. The user does not need to indicate how a model

is constructed, but merely names one of the group of available models. Each

of these models was predefined during the design of the DSS.

Present-day decision support systems fall into the first two categories

[4] of user-formulated models or system designer-formulated models. The

third category involves system-formulated models. User needs are stated



9

in a non-procedural manner. The degree of modeling flexibility offered by

such a DSS is a function of model building knowledge available to the DSS.

(Just as with the other two categories, the flexibility also depends on the

extent of the pool of modules.) The manner in which application-specific

modeling knowledge is incorporated into a DSS will determine whether that

DSS can deal with only one application area or whether it is capable of

being used in many application areas.

This may be understood by considering Figure 2, which shows a generic

description of decision support systems (also see Bonczek, et. al. [3]).

The description maintains that a DSS has the three indicated subsystems.

The problem processing system (PPS) is the subsystem that mediates user

needs, stated in a language system (LS), with the decision support system's

knowledge system (KS) in order to provide an answer to the user. Now

if the PPS code depends upon the particular models that are to be

available to a user, then alterations or additions of models (e.g.,

due to a change in the application area to be supported) necessarily

require changes in the PPS code. That is, the valid ways for inter-

facing modules are embedded in the PPS software. This design approach

is typical In the OR/operations management software packages presently

available. The result of embedding knowledge about models for a

specific application area in a PPS is a considerable degree of inflexibility.

Can this application-specific modeling knowledge be separated from a

PPS such that the PPS is general? That is, can we devise a PPS such that

its code does not need to change in order to support decision makers in

various application areas? The PPS should also be invariant to changes in the

modeling knowledge within a specific application area. The flexibility

afforded by such a system is significant from the standpoint of the previously

cited shortcomings and desirable features vis-a-vis corporate modeling.

Further comments on the importance of this generality appear in [ 3 J and

[13].

__ _ _ - . --. ... .. -
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To prevent application-specific modeling knowledge from entering into

the PPS code, we propose that the predicate calculus be used to express

application-specific modeling knowledge and that the resultant axiom set

be stored (along with the module pool) in the KS. For our present purposes

a KS may be thought of as a data base management (DBMS) facility. Although

DBIS are conventionally used for storing factual descriptive data they can

also be used to store procedural data (i.e., program modules) as suggested

by Bonczek, et. al. [ 1]. The techniques for storage (and retrieval) of

modules and predicate calculus expressions in a data base are not discussed

here.

When we speak of predicate calculus as a "language" that can be used

to formally express modeling knowledge, this does not imply procedurality

among axioms in an axiom set. The wffs are used to state facts about how

modules may be used in conjunction with each other and with certain data

in order to effect certain results. Many such facts or axioms are compiled

for a particular application area. In essence, these formally stated

modeling facts capture the knowledge of an expert (i.e., an operations

research practicioner) about a particular application. Different applications

(e.g., different corporations) would have different axiom sets and different

module pools. But whatever the application, its axiom set is stored in the

KS and acted upon by the PPS in order to formulate a complete model in

response to a user's statement of a problem.

An axiom set can be viewed as a collection of fragments of knowledge

about how to use modules with data in conducting various analyses. Given

that this knowledge has been elicited from OR experts, it can be used to

automatically construct a model(s) which, when executed, gives a desired

report. This can be accomplished by implementing the resolution principle

as a part of the PPS. The next section of this paper provides an example

of how modeling knowledge, stated as wffs, can be used in conjunction with

_ _ _ - .. . .... . . . . . .. . =- _I
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the resolution principle to build a model (out of modules) and determine

its data inputs.
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3. Stating Modeling Knowledge in the Predicate Calculus

Recall that a predicate indicates a particular relationship among

its arguments. For our present purposes it is convenient to introduce the

notion of an "operator" predicate. Notice that a module formally specifies

an operational relationship among its various inputs and its outputs. A

predicate that is used to denote a module (i.e., an operational relation-

ship) will be referred to as an operator predicate. Its arguments are the

module inputs and outputs. Operator predicates will be distinguished from

other predicates by underlining the operator's predicate symbol.

As another addition to the usual predicate calculus, the idea of

preconditions will be used. In state space analysis [16] preconditions

are simply conditions that must be satisfied prior to applying an operator;

an operator transforms one state into another state. An analogous situation

exists with modules. for a module transforms one "information state" into

another "information state". Before a module can be executed to effect the

transformation, certain preconditions must have been met. That is, all

inputs to the module must be fully instantiated. Those arguments of an

operator predicate, whose instantiations are prerequistes to the execution

of the corresponding module, will be referred to as preconditions. They

will be underlined in the examples that follow.

A final, but minor, departure from predicate calculus conventions pre-

sented earlier is that numerals appearing as arguments will be treated as

constants. However. all other symbols (a, b, c, c, w, div, V, etc.) appear-

ing as arguments should be understood to be variables. Constants are

instantiated arguments; variables are not; functional terms will not be used.

A simple example has been chosen to illustrate the foregoing ideas.

Suppose that our module pool contains a regression module, a prediction

module, an operator that finds dividends from profit and shares, and an

operator that finds profit from revenues and expenses. These four modules
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are respectively denoted by the predicate symbols REGRESS, PREDICT, 011

02. Facts about how these can be used could be added to the KS as the

DSS is being initially readied or some of it could be added later, as

incremental increases in the system's modeling knowledge. Whatever the

case, suppose that we (as operations researchers, not as users) currently

want to add the fact that the regression and prediction modules can be

used, together with past sales data and certain sales-indicators, to project

the revenue in a certain year. This fact can be stated as shown in wff ()

of Figure 3. Although it is not explicitly stated in (1), all variables

in this wff are universally quantified. The same two modules can again

be used in tandem, but with different data, in order to project expenses

in a certain year. This modeling fact is captured in wff (3).

A precise word description of modeling knowledge represented in (1)

would be fairly lengthy. For instance, if X are sales indicators in years

YR, and x are same types of sales indicators in year yr and Y are sales in

years YR, and X, Y as inputs to a regression module produce the output B

and B along with x are inputs to a prediction module that gives output r,

then the revenue in year yr is r. Expression (1) is clearly superior to

the word description from the standpoints of conciseness, unambiguous

documentation, and amenability to computerized processing. The latter is

particularly significant when efforts are made to combine and then utilize

fragments of modeling knowledge. In the usual situation, wherein many

fragments are available for use, the word form would not be workable for

automated formulation. Even if the word form were only to be used during

"manual" (i.e., human mental) formulation, the mental processing could

become quit* cubersome.

Two additional fragments of modeling knowledge 
are given in wffs (2)

and (1). The former states that if """ is profit in yr" and if

"shares" is the assumed number of shares and if "d" is the output of 01



given the inputs "n" and "shares", then "d" is the dividend in "yr"o The

latter states the if "e" is the expense in "yr" and "r" is revenue in "yr"

and "p" is the result of operator 02 where "e" and "r" are preconditions,

then "p" is the profit in "yr". The clause form for each of these wffs is

given in wffs (5) through (8) of Figure 3. These clause forms are what must

actually be stored in the KS. The ordering of these four fragments of model-

ing knowledge is irrelevant for our present purposes.

Figure 4 displays several meta-axioms that we will have occasion to

use. All are stated in clause form and they make up a portion of the axiom

set. Meta-axioms establish the meaning or sense of predicates appearing

in the axiom set by indicating the relationship between predicate arguments

and the data item types that can appear in a user's request for data. For

instance, DIVIDEND, YEAR, and SH are all data item types that the user can

refer to when making a request using the LS.

To summarize, we have a method for formally representing modeling

knowledge. This formal representation can be stored in a computer-based

knowledge system. Fragments of modeling knowledge are specified by a

modeling expert (e.g., operations researcher), not by the DSS user.

Knowledge specified in this manner can readily be added to or deleted from

the KS on a continuing basis by utilizing common data base management tech-

niques. The result is a separation of application-specific modeling know-

ledge from the PPS, thereby allowing PPS generality in terms of the kinds

of modeling supported. Notice that the axiom set serves as a clear

documentation of legitimate model building and utilization techniques for

a particular application area. For comments on the importance of modeling

procedure documentation see C18]. Continuing the above example, we shall

now see how a PPS with resolution capabilities can formulate a model

which, when executed, will provide data requested by a DSS user.
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4. Model Formulation by Resolution

Recall that resolution makes use of the axiom set plus a predicate

calculus expression that states exactly what it is that we are to attempt

to infer from the axiom set. We earlier referred to this expression as

a target axiom or a theorem. Now the user of a DSS also has a "target" in

mind when specifying the data that are desired in terms of the LS. If the

system's user is an upper-level manager, it is advantageous to furnish a

LS that is English-like. That is, a user should not be forced to learn

predicate calculus in order to use the DSS. Bonczek, et.al.[21 have shown that

expressions in an extant, English-like, non-procedural problem language can

be readily converted into clause form expressions in the predicate calculus.

Using the problem language the user might type: FIND DIVIDEND FOR YEAR = 1979

AND SH = 100. The corresponding wff is a z DIVIDEND (z) AYEAR(1979) MH(100)

and converting the negation of this wff to clause form gives

-DIVIDEND (z) v-YEAR (1979) v-SH (100).

This negated "theorem" is taken as a parent clause in the first step

of resolution. The connection between data item types appearing in the

user's request and the modeling knowledge supplied by a modeling expert is

established by using meta-axions during the resolution process. Figure 5

traces the application of the resolution principle to the above data request.

Observe the last resolvent shown in Figure 5, consisting of (12) and (13).

In our use of resolution for model formulation, we do not need to explicitly

complete the resolution. However, the procedure undertaken upon reaching

(12) and (13) i., in effect, a virtual completion of the resolution.

Expression (13) consists of those literals in the last resolvent that

do not have operator predicates. As pointed out in [2 ] each of these

literals corresponds a data retrieval query that can be executed against

the KS data base. The reader should consult [ 2] for details of how this

works. Briefly, the aforementioned correspondence is automatically
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established with the aid of the meta-axioms. Execution of the resultant

retrieval query makes available a list (i.e., 0,1 or more) of those instant-

iations of a variable which permit a unification to occur. For example,

EXP-IND (u, 1979) corresponds to a retrieval query to retrieve expense-

indicators for the year 1979. If the data base contains such expense

indicators (denote them by U0 , where U represents a constant) then the

expression EXP-ND (Uo, 1979) is T. The act of retrieving the actual

values U0 may be viewed as a virtual unification (U° - U) with the last

resolvent of Figure 5. Having the values U available for use by a module

is akin to the substitution of U for U in (12).0

In this way all literals in (13) vanish, having been virtually

resolved via data retrieval techniques. Now, if a data retrieval query

gives a null answer then we cannot proceed, but must attempt some further

explicit resolution. We shall return to this issue momentarily; suppose,

for the time being, that all retrievals are successful. Then (13) is

eliminated and we are left with (12) plus the data retrieved for variables

Y. X, U. V, x. and u. All literals in (12) involve operator predicates,

each having corresponding executable modules. However, before a given module

can be executed its preconditions must be satisfied. That is, any under-

lined variable must be instantiated. For instance, before 01 can be

executed, ff must be replaced by some constant.

From the earlier data retrieval, the variables Y, X, U, V, x, and u

have been instantiated. If we let X and Y represent the instantiations
0 0

of X and Y, then in (12) we have the literal -RERESS (Xo, YQ ,B). If we

next execute the regression module, then instantiations of Bof B are obtained.

As a result of this execution we can assert that REGRESS (Xo, Yo, B0 ) is T.

Note that this unifies with -REMRESS (X , Y0, B) and results in the sub-

stitution of B for B. This means that the prediction module can be

executed, with B and Ko as inputs, in order to eliminate .PREDICT (B0. X0 . r)
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from (12) via a virtual unification. The virtual resolution

of (12') to the null resolvent by an ordered succession of module

executions is traced in Figure 6. As a starting point for this trace we

take the virtual resolvent (12') resulting from the application of success-

ful data retrievals. Symbols with a "o" subscript should be understood

to represent constants that result from data retrieval or module execution.

Figure 6 gives an ordering of module executions (i-17) and the sub-

stitutions describe the necessary inter-module data linkages. The null

resolvent is virtually obtained by appropriate module execution. Remember

that the original user problem was to determine the 1979 dividend if there

are 100 shares. Equivalently the problem was to find an instantiation

(i.e., value) of z such that 2z DIVIDEND (z) YEA (1979) ASH (100). Let's

review what the PPS has done to solve this problem. The PPS made use of

the KS, which contained modeling knowledge (the axiom set), procedural

knowledge (the module pool), and mundane descriptive knowledge (data on

past sales and on sales-indicators). Explicit resolution was used (Figure 5)

until a resolvent was obtained (12, 13) that could not be further unified

with any axiom in the axiom set. Virtual resolution was performed in the

guise of data retrieval, the details of which cannot be given here (see [2]).

If all literals having non-operator predicates are eliminated by data

retrieval, then further virtual resolution in the guise of ordered module

execution is attempted. If a null resolvent is virtually attained then the

answer to the user's request has been discovered (Z0 in the preceding

example). Green's [10] answer tracing mechanism can be usefully applied,

to keep track of where the answer is, in the face of many substitutions.

Thus the PPS has formulated a model consisting of several modules

in response to a user-stated problem. The module ordering could be

established as shown in Figure 6 or obtained more directly by a matching

of preconditions with outputs appearing in (12'). Not only was a model

_____ ____ ____ ____ ____ __. ....___ I
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formulated by establishing data relationships among modules, but the PPS

also automatically handled the data interfaces between modules and the

data base. The entire process was directed by a user who does not need any

expertise in predicate calculus or data base management techniques.

Notice that the approach to PPS design, as outlined in the two

preceding paragraphs, is general. The processing methods proposed,

and illustrated in the example, do not depend upon the specific example

domain. In order to operate, the PPS does depend upon

- the existence of modules (not upon the nature of the modeling

performed by each module)

- the existence of relevant data for the modules, organized according

to either network data base techniques or a mixed knowledge re-

presentation method (as detailed in [21)

- the existence of formally stated modeling knowledge (as in Figure 3)

pertinent to the available modules and data.

These three kinds of knowledge are stored in a generalized decision support

system's KS, but they vary from one application domain to another. One

application will involve different modules, data, and/or modeling facts

than another application. Thus the contents of a decision support system's

KS will differ from one application to the next and this enables the PPS

to be invariant from one application to the next.



19

5. Extentions

The foregoing simple example was chosen for illustrative purposes.

In practice, a much larger module pool, as well as a more extensive axiom

set, would be available to the PPS. Thus a particular operator predicate

may appear in many axioms and may be a participant in many of the models

that the PPS can potentially construct. In practice some operator predicates

may have more detailed or extensive argument sets than those in the previous

example. For example, we may want to utilize the R2 output a regression

module. Then (I) might become:

RGRESS(Y, X, B, R2 ) APDIC(B, x, r) ASAES(Y, YR,)ASA.ES-IND(x, iRn)

ASALES-IMI(x. yr) AMT (R 2,.36) R'EV(r, Yr)

where GT is a "greater than" predicate. This axiom states that if R 2>.36

then "r" will considered as revenue in "yr" otherwise it will not be taken

as a valid estimation of revenue.

An interesting research issue is how to implement evaluative capabilities

into the modeling knowledge. The use of logical comparisons (e.g., GT) is

a step in this direction. There are severaL ostensible ways to treat com-

parison predicates: treat them as operator predicates, treat them as a

special class of predicates whose operational details should be incorporated

into the PPS, etc. The impact of permitting evaluative capabilities is that

they allow branching knowledge to be given in the axiom set. (Of course,

branching also exists within modules). For example,

2 2
RGRESS (Y, X, B, R )ALE (R2 , .36) AECON-DATA(z, yr) A SALES-FORCAST(z,k)

- REv (k, yr)

could be added to the axiom set. If an R2 s .36 is obtained then the model

would involve some sort of sales-forcasting module (other than PREDICT) with

appropriate economic data from the data base.
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6. Implementing the Resolution Principle

Earlier the question was raised as to what happens if we reach a point

where a data retrieval implied by some literal in the resolvent is not

successful. The resolvent in question here is assumed to be incapable of

further explicit resolution. That is. no attempts at virtual resolution

via data retrieval are made until a resolvent is attained which cannot be

unified with any of the clauses in the axiom set. A similar problem may

be encountered even if all data retrievals are successful. It may be

impossible to establish an ordering over the remaining operator predicates.

Either type of impasse will necessitate some backtracking.

It is in this connection that the selection rule and search strategy

used in implementing the resolution principle are important. Remember that

these involve the two kinds of choices made in resolution implementations:

selecting a literal to use as the basis of unification and a search strategy

for exploring those members of the axiom set which can be unified on the

basis of the selected literal. As the axiom set grows, the search tree

for a given "theorem" can become very large. Van Emden £21] comments that

the combinatorial problem in implementing the resolution principle had

led to criticisms in terms of the practicality of resolution. But he

proceeds to point out that nothing in the resolution principle requires an

implementation of the "uniform" or "saturation" variety. Several

implementations are cited that use various heuristics to guide the

inference procedure In other implementations a foreknowledge of char-

acteristics of an application area are exploited to provide a savings.

A number of techniques have been devised to reduce the quantity of

extraneous and irrelevant resolvents that can arise during resolution,

thereby reducing the amount of backtracking. Among these are semantic

resolution C191, which uses ordered predicates to partition the clauses

into classes within which no resolvents are formed; lock resolution [5],

which indexes clause elements and only permits resolution on the predicates

____ ___ ___ ____ ___ __- w---.-- -.-
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with the smallest index; input resolution [6], in which for each resolvent

one of the parent clauses is either an original axiom or the negated

conclusion. The first two techniques are complete (they always find a

solution if one exists), while the latter is not. However, input resolution

is efficient and simple to implement.

The present authors are currently engaged in research aimed at the

discovery of heuristics, that go beyond those noted above, to guide

resolution in the case of model formulation. This research is taking

several directions, that we shall briefly describe here. First, it

appears that the meta-axioms can be used to considerably narrow the

search tree. Secondly, the literals within a resolvent can be ordered

(based on the degree of instantiation) as candidates for being chosen as

a basis for the next unification. Third, unification on the basis of a

literal that contains an operator predicate may be desirable to avoid in

the early stages of resolution. Fourth, it may be useful to base a search

strategy upon the presence or absence of operator predicates in clauses

that can be chosen at a given stage of the resolution.

Fifth we may be able to take advantage of the special form of axioms

that have been used to represent modeling knowledge. :c happens that each

clauses in the axiom set given earlier is a special type of predicate

calculus expression called a Horn clause, (see Horn, [12)). A Horn clause

is a clause containing no more than one positive literal. Kowalski £14)

has successfully implemented a resolution system for Horn clauses. Further-

more, there is a marked correspondence between modeling knowledge stated

in Horn clauses and the knowledge representation methods used in successful

production systems such as the MYCIN system of Davis et. al. (71.

Although the PPS dynamics may be formally stated in terms of resolution,

I
________

1 .. ... .. ... . . . .. . .
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it must be emphasized that the PPS outlined here involves a substantial

departure from resolution problem solving systems. The distinction is

not only in terms of the PPS emphasis on model formulation, but also in

terms of its usage of data base management techniques in place of resolution.

The PPS is not simply a resolution system.

In terms of its purpose, the PPS most closely resembles STRIPS [93,

among the resolution-oriented systems. The PPS constructs (and then

executes) a plan of analysis in terms of modules; STRIPS constructs a plan

of actions, specified in terms of operators, to be taken by a robot [3].

We shall cite the major methodological differences between STRIPS and PPS.

First, STRIPS uses theorem proving to determine whether a goal is met by

the current state. If the goal is not met, then the addition and deletion

lists of a permissible operator (an operator whose preconditions are sat-

isfied by the current state) are used to generate a new current state, that

is then checked against the goal, etc. When resolution shows that a

current state meets the goal then the sequence of operators used to generate

the current state are taken as the robot's plan of action. The PPS does

not take the STRIPS state space approach. In the PPS, operators (modules)

do not have addition and deletion lists, but they are incorporated into

the problem solving process via Horn clauses.

A second major methodological difference (and this is the key difference)

lies in the nature of knowledge representation. In STRIPS, as in all

resolution systems, knowledge about the environment is specified in terms

of the predicate calculus. For nontrivial applications, the amount of

environmental knowledge that must be specified in predicate form escalates

and renders the automatic deduction process practically intractable. In

the PPS, none (or very little [21) of the environmental knowledge is
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specified in predicate form. In the earlier example, for instance, the

knowledge about sales, expenses, sales indicators and expense indicators

is knowledge about the decision support system's environment. An attempt

to maintain such information in the form of hundreds (or more likely

thousands) of needed clauses, and to then use those clauses during

resolution, would be unworkable. Large volumes of these kinds of environ-

mental facts are more appropriately handled with data base management

techniques [2]. Indeed, data base techniques were designed for (and are

today widely used for) just such large volumes of simple facts.

To summarize, the proposed PPS uses resolution for dealing with a

relatively small volume of modeling knowledge specified in the Horn clause

form and it uses data base management for dealing with relatively voluminous

environmental knowledge that is stored according to an appropriate data base

structure [21. The results are necessarily a significantly shorter axiom

list and thus a reduced level of searching during resolution.

I
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Conclusion

The work presented here is intended as a contribution towards the

integration of OR/MS with NTS/DSS as discussed by Edelman C 8],

Hoffman [i], and Vazsonyi [22". Predicate calculus was presented as a

formal language for capturing (and also documenting) the modeling

knowledge of OR experts. Utilization of the predicate calculus in this

manner permits application-specific modeling knowledge to be separated

from the PPS code of a decision support system. The predicate calculus

expressions can be stored in the KS of a DSS in order to take advantage

of the ease of update afforded by data base management techniques.

The result is a general, flexible DSS which addresses, in part, the

three corporate modeling shortcomings appearing in the introduction. It

reduces modeling inflexibility. Some aid is provided in terms of

documentation of modeling knowledge. Large data input requirements to

modules are handled automatically by the DSS. The methods introduced in

this paper also permit a DSS that possesses, to some degree, the desirable

features of corporate modeling alluded to in the introduction. Sensitivity

analysis can be incorporated not only within modules, but one can also

compare the results of various modeling techniques (e.g. different for-

casting methods can be incorporated into the axiom sets). Data base

utilization by modules is accomplished automatically. Flexible report

generation can be provided by a "sub-pool" of report generation modules that

is subject to facile updating.

This paper has presented a basic skeleton of a methodology for automatic

model formulation and utilization. Moreover, techniques for implementation

were identified. Further research is needed in the realms of user language

extentions, validation of the internal consistency of axiom sets, and

resolution heuristics for model formulation.
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